

Aeronautics Radar detected an unidentified plane 5000 mi away, approaching at $700 \mathrm{mi} / \mathrm{h}$. Fifteen minutes later an interceptor plane was dispatched, traveling at $800 \mathrm{mi} / \mathrm{h}$. How long did the interceptor take to reach the approaching plane?

Relate distance for interceptor + distance for approaching plane $=5000 \mathrm{mi}$
Define Let $t=$ the time in hours for the interceptor.
Then $t+0.25=$ the time in hours for the approaching plane.
Write $800 t+700(t+0.25)=5000$

$$
\begin{aligned}
800 t+700 t+175 & =5000 \quad \text { Distributive Property } \\
1500 t & =4825 \quad \text { Solve for } t . \\
t & \approx 3.217 \text { or about } 3 \mathrm{~h} 13 \mathrm{~min}
\end{aligned}
$$

tice by Example

Example 1
(page 18)

Example 2
(page 19)

Example 3 (page 19)

Example 4 (page 19)

Solve each equation. Check your answers.
A space probe leaves Earth at the rate of $3 \mathrm{~km} / \mathrm{s}$. After 100 days, a radio signal is sent to the probe. Radio signals travel at the speed of light, about $3 \times 10^{5} \mathrm{~km} / \mathrm{s}$. About how long does the signal take to reach the probe? about 86.4 seconds, or 1 minute 26.4 seconds

e and problem Solving

1. $7 w+2=3 w+9423$
2. $15-g=23-2 g 8$
3. $43-3 d=d+9 \frac{17}{2}$
4. $5 y+1.8=4 y-3.2-5$
5. $6 a-5=4 a+2 \frac{7}{2}$
6. $7 y+4=3-2 y-\frac{1}{9}$
7. $5 c-9=8-2 c \frac{17}{7}$
8. $4 y-8-2 y+5=0 \frac{3}{2}$
9. $6(n-4)=3 n 8$
10. $2-3(x+4)=8-6$
11. $5(2-g)=02$
12. $2(x+4)=80$
13. $6(t-2)=2(9 t-2)-\frac{2}{3}$
14. $4 w-2(1-w)=-38-6$
15. $4(k+5)=2(9 k-4) 2$
16. $10(1-2 y)=-5(2 y-1) \frac{1}{2}$
Solve each formula for the indicated variable.
17. $A=\frac{1}{2} b h$, for $h \quad h=\frac{2 A}{b}$
18. $s=\frac{1}{2} g t^{2}$, for $g \quad g=\frac{2 s}{t^{2}}$
19. $V=\ell w h$, for $w^{w}=\frac{V}{l h}$
20. $I=p r t$, for $r r=\frac{1}{p t}$
21. $S=2 \pi r h$, for $r r=\frac{S}{2 \pi h}$
22. $V=\pi r^{2} h$, for $h=\frac{V}{\pi r^{2}}$

Solve each equation for \boldsymbol{x}. Find any restrictions. 23-28. See margin.
23. $a x+b x=c$
24. $b x-c x=-c$
25. $\frac{x}{a}+b=c$
26. $\frac{x}{a}-5=b$
27. $\frac{x-2}{2}=m+n$
28. $\frac{2}{5}(x+1)=g$
3. Practice

Assignment Guide

7 objective
(3) Core 1-28, 36-47, 55-64
(c) Extension 65

2 objective
(a) (B) Core 29-35, 48-54
(C) Extension 66-68

Standardized Test Prep 69-72
Mixed Review 73-82

Exercises 18-21 Students may find it helpful to first rewrite the expression with the indicated variable as the rightmost factor. For example, in Exercise 20, rewrite $I=$ prt as $I=(p t) r$. This makes it easier to see what to multiply or divide each side by to isolate r.

Enrichment 1-3

Reteaching 1-3

Practice 1-3

■...

[^0]ercises 42-47 You may wish to ve students state any strictions on the variables.

ror Prevention

ercise 55 Students should alerted to the fact that strictions on variables may stem om the original equation or om expressions in the solution.

ror Prevention

ercise 67b Students may arrive the equation $x= \pm \sqrt{\frac{c-b}{a}}$ d say that $c-b$ and a must be rfect squares in order for the o solutions to be rational. Urge em to reassess the possibilities. e quantity $\frac{c-b}{a}$ can be a rect square even though - b and a are not. Consider, example, the case in which $=4, b=1$, and $a=3$.

ges 21-24 Exercises

$$
\begin{aligned}
& R=\frac{r_{1} r_{2}}{r_{1}+r_{2}} \\
& r_{2}=\frac{R r_{1}}{r_{1}-R} \\
& h=\frac{S-2 \pi r^{2}}{2 \pi r} \\
& v=\frac{h+5 t^{2}}{t} \\
& h=\frac{2\left(v-s^{2}\right)}{s} \\
& b_{2}=\frac{2 A}{h}-b_{1}
\end{aligned}
$$

$$
x=a b-b^{2}-a, b \neq 0
$$

$$
x=\frac{c-a}{b-d}, b \neq d
$$

$$
x=\frac{b}{c}+\frac{d}{a}, a \neq c
$$

$$
x=\frac{3 a-b-8}{a-b}, a \neq b
$$

$$
x=\frac{3 b+2 c-5}{b-c}, b \neq c
$$

$$
x=\frac{2 a b-2 c}{3 a t-c d}, 3 a t \neq c d
$$

$$
x=\frac{4 a-3 b c}{a q-5 b p}, 5 b p \neq a q
$$

$$
x=\frac{c b}{2 d a}+6, a, b, d \neq 0
$$

$$
x=\frac{10 c}{a}, a \neq 0
$$

$$
x=\frac{a-c}{m}+a, m \neq 0,
$$

$$
x \neq a
$$

Write an equation to solve each problem.

29. Two buses leave Houston at the same time and travel in opposite directions. One bus averages $55 \mathrm{mi} / \mathrm{h}$ and the other bus averages $45 \mathrm{mi} / \mathrm{h}$. When will they be 400 mi apart? 4 h
30. Two planes left an airport at noon. One flew east at a certain speed and the other flew west at twice the speed. The planes were 2700 mi apart in 3 h . How fast was each plane flying? $300 \mathrm{mi} / \mathrm{h} ; 600 \mathrm{mi} / \mathrm{h}$
31. Geometry The length of a rectangle is 3 cm greater than its width. The perimeter is 24 cm . Find the dimensions of the rectangle. width $=4.5 \mathrm{~cm}$; length $=7.5 \mathrm{~cm}$
32. Geometry One side of a triangle is 1 in . longer than the shortest side and is 1 in . shorter than the longest side. The perimeter is 17 in . Find the dimensions of the triangle. $4 \frac{2}{3}$ in.; $5 \frac{2}{3}$ in.; $6 \frac{2}{3}$ in.
33. Geometry The sides of a rectangle are in the ratio $3: 2$. What is the length of each side if the perimeter of the rectangle is $55 \mathrm{~cm} ? 11 \mathrm{~cm} ; 11 \mathrm{~cm} ; 16.5 \mathrm{~cm}$;

35a. $x+(x+1)+$
$(x+2)=90 ; 29$, 30, 31
b. $(x-1)+x+$ $(x+1)=90 ; 29$, 30, 31

Apply Your Skills
34. Geometry The sides of a triangle are in the ratio $3: 4: 5.5 \mathrm{~cm}$. What is the length of each side if the perimeter of the triangle is $30 \mathrm{~cm} ? 7.5 \mathrm{~cm} ; 10 \mathrm{~cm} ; 12.5 \mathrm{~cm}$
35. The sum of three consecutive integers is 90 . a-b. See left.
a. Find the three numbers by letting x represent the first integer.
b. Find the three numbers by letting x represent the second integer.

Solve each equation. 36. $\frac{46}{39}$, or $1 \frac{7}{39}$
36. $0.2(x+3)-4(2 x-3)=3.4$
37. $12-3(2 w+1)=7 w-3\left(7+w^{3}\right)$
38. $3(m-2)-5=8-2(m-4)$
39. $7(a+1)-3 a=5+4(2 a-1) \frac{3}{2}$
40. $\frac{x}{2}+\frac{x}{5}+\frac{x}{3}=3130$
41. $0.5\left(2 x+\frac{3}{4}\right)-\frac{1}{3}(0.1+x)=1$
38. $\frac{27}{5}$, or $5 \frac{2}{5}$
$\frac{79}{80}$, or 0.9875
Solve each formula for the indicated variable. 42-47. See margin.
42. $R\left(r_{1}+r_{2}\right)=r_{1} r_{2}$, for R
43. $R\left(r_{1}+r_{2}\right)=r_{1} r_{2}$, for r_{2}
44. $S=2 \pi r^{2}+2 \pi r h$, for h
45. $h=v t-5 t^{2}$, for v
46. $v=s^{2}+\frac{1}{2} s h$, for h
47. $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$, for b_{2}
48. Geometry The measure of the supplement of an angle is 20° more than three times the measure of the original angle. Find the measures of the angles.
$40^{\circ}, 140^{\circ}$
49. Geometry The measures of an angle and its complement differ by 22°. Find the measures of the angles. $34^{\circ}, 56^{\circ}$

Real-World (3) Connection

In the 2000 Olympics, Marion Jones won three gold and two bronze medals.

50. Michael drove to a friend's house at a rate of $40 \mathrm{mi} / \mathrm{h}$. He returned by the same route at a rate of $45 \mathrm{mi} / \mathrm{h}$. The driving time for the round trip was 4 h . What is the distance Michael traveled? about 169.4 mi
51. Sports In the 2000 Olympics, Marion Jones of the United States won the gold medal in the 100 -meter race with a time of 10.75 seconds. In the 1968 Olympics, Wyomia Tyus, also of the United States, won the gold medal in the 100 -meter race in 11.08 seconds. If they ran in the same race repeating their respective times, by how many meters would Jones beat Tyus? $\approx 2.98 \mathrm{~m}$
52. Investments Suppose you have $\$ 5000$ to invest. A certificate of deposit (CD) earns 6% annual interest, while bonds, which are more risky, earn 8% annual interest. You decide to invest $\$ 2000$ in a CD and the rest in bonds. How much interest will you have earned at the end of one year? Of two years?
\$360; \$746.40
22 Chapter 1 Tools of Algebra

66a. 10 cows; 30 chickens. Sample equation:
$4 c+2(40-c)=100$, where c is the number of cows
c. Answers may vary. Sample: In all, a repair shop has 11 bicycles and tricycles to repair. These have a total of 26
wheels. How many bicycles and how many tricycles are there? 7 bicycles, 4 tricycles
53. Find 4 consecutive odd integers with a sum of $184.43,45,47,49$
54. Find 4 consecutive even integers such that the sum of the second and fourth is 76 .
$34,36,38,40$
Solve for \boldsymbol{x}. State any restrictions on the variables. 55-64. See margin p. 22.
55. $\frac{x+a}{b}+b=a$
56. $b x+a=d x+c$
57. $c x-b=a x+d$
58. $a(x-3)+8=b(x-1)$
59. $c(x+2)-5=b(x-3)$
60. $a(3 t x-2 b)=c(d x-2)$
61. $b(5 p x-3 c)=a(q x-4)$
62. $\frac{a}{b}(2 x-12)=\frac{c}{d}$
63. $\frac{3 a x}{5}-4 c=\frac{a x}{5}$
64. $\frac{a-c}{x-a}=m$

Challenge
a. $t=\frac{s-1055}{1.1}$
b. about $40.9^{\circ} \mathrm{F}$
c. $C=\frac{5}{9}(F-32)$
d. about $4.9^{\circ} \mathrm{C}$
65. a. The speed of sound in air s, in ft / s, is given by the formula $s=1055+1.1$, where t is the temperature in degrees Fahrenheit. Solve the formula for t,
b. Find the Fahrenheit temperature at which the speed of sound is $1100 \mathrm{ft} / \mathrm{s}$.
c. The relationship between the temperature in degrees Fahrenheit F and degrees Celsius C is given by the formula $F=\frac{9}{5} C+32$. Solve the formula for C.
d. Find the Celsius temperature at which the speed of sound is $1100 \mathrm{ft} / \mathrm{s}$.
66. There are 40 cows and chickens in the farmyard. One quiet afternoon, Jack counted and found that there were 100 legs in all. How many cows and how many chickens are there?
a. Solve this problem by writing and solving an equation. See margin p. 22.
b. Critical Thinking This problem can also be solved by reasoning. Suppose all 40 animals are chickens. How many legs would there be? How many too few legs is that? If one chicken is replaced by one cow, by how many would the number of legs be increased? How many cows would have to replace chickens to get the required 100 legs? 80 legs; 20 legs; 2 legs; 10 cows
c. Open-Ended Write a problem about the number of wheels in a group of bicycles and tricycles. Solve your problem. See margin p. 22.
67. Assume that a, b, and c are integers and $a \neq 0$.
a. Proof Prove that the solution of the linear equation $a x-b=c$ must be a rational number. See margin.
b. Writing Describe the values of a, b, and c for which the solutions of $a x^{2}+b=c$ are rational. See back of book
68. A tortoise crawling at the rate of $0.1 \mathrm{mi} / \mathrm{h}$ passes a resting hare. The hare wants to rest another 30 min before chasing the tortoise at the rate of $5 \mathrm{mi} / \mathrm{h}$. How many feet must the hare run to catch the tortoise? about 269.4 ft

4. Assess

Lesson Quiz 1-3

1. Solve $16 x-15=-5 x-48$ 3
2. Solve $5(1-3 m)=$ $30-2(4 m+7)-\frac{11}{7}$
3. Solve $s=\frac{a+b-c}{2}$ for b. $b=2 s-a-c$
4. Mrs. Chern drove at a rate of $45 \mathrm{mi} / \mathrm{h}$ from her home to her sister's house. She spent 1.5 hours having lunch with her sister. She then drove back home at a rate of $55 \mathrm{mi} / \mathrm{h}$. The entire trip, including lunch, took 4 hours. How far does Mrs. Chern live from her sister? $61 \frac{7}{8} \mathrm{mi}$
5. Find three consecutive odd integers whose sum is 111 . 35, 37, 39

Alternative Assessment

Have students work in groups. Each group creates a quiz containing five questions covering the content of the lesson. At least one question should be an application. Groups trade quizzes and solve each problem. Then, both groups discuss the results together and resolve any difficulties.

GAT Practice

A sheet of blank grids is available with the FCAT Daily Practice and Strategies Transparencies booklet. Give this sheet to students for practice with filling in the grids.

Resources

For additional practice with a variety of test item formats:

- FCAT Practice, p. 51
- FCAT Strategies, p. 46
- FCAT Daily Practice and Strategies Transparencies

[^0]: -24 Exercises
 $\frac{c}{+b}, a \neq-b$
 $\frac{c}{-b}, b \neq c$
 $(c-b)$ or
 $a b, a \neq 0$

